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Preface

General Approach and Mathematical Level

Our emphasis in creating this edition is less on adding new material and more on
providing clarity and deeper understanding. This objective was accomplished in
part by including new end-of-chapter material that adds connective tissue between
chapters. We affectionately call these comments at the end of the chapter “Pot
Holes.” They are very useful to remind students of the big picture and how each
chapter fits into that picture, and they aid the student in learning about limitations
and pitfalls that may result if procedures are misused. A deeper understanding
of real-world use of statistics is made available through class projects, which were
added in several chapters. These projects provide the opportunity for students
alone, or in groups, to gather their own experimental data and draw inferences. In
some cases, the work involves a problem whose solution will illustrate the meaning
of a concept or provide an empirical understanding of an important statistical
result. Some existing examples were expanded and new ones were introduced to
create “case studies,” in which commentary is provided to give the student a clear
understanding of a statistical concept in the context of a practical situation.

In this edition, we continue to emphasize a balance between theory and appli-
cations. Calculus and other types of mathematical support (e.g., linear algebra)
are used at about the same level as in previous editions. The coverage of an-
alytical tools in statistics is enhanced with the use of calculus when discussion
centers on rules and concepts in probability. Probability distributions and sta-
tistical inference are highlighted in Chapters 2 through 10. Linear algebra and
matrices are very lightly applied in Chapters 11 through 15, where linear regres-
sion and analysis of variance are covered. Students using this text should have
had the equivalent of one semester of differential and integral calculus. Linear
algebra is helpful but not necessary so long as the section in Chapter 12 on mul-
tiple linear regression using matrix algebra is not covered by the instructor. As
in previous editions, a large number of exercises that deal with real-life scientific
and engineering applications are available to challenge the student. The many
data sets associated with the exercises are available for download from the website
http://www.pearsonglobaleditions.com/Walpole or in MyStatLab.

Summary of Changes

• We’ve added MyStatLab, a course management systems that delivers proven
results in helping individual students succeed. MyStatLab provides engaging
experiences that personalize, stimulate, and measure learning for each student.

13

http://www.pearsonglobaleditions.com/Walpole


14 Preface

To learn more about how MyStatLab combines proven learning applications
with powerful assessment, visit www.mystatlab.com or contact your Pearson
representative.

• Class projects were added in several chapters to provide a deeper understand-
ing of the real-world use of statistics. Students are asked to produce or gather
their own experimental data and draw inferences from these data.

• More case studies were added and others expanded to help students under-
stand the statistical methods being presented in the context of a real-life
situation.

• “Pot Holes” were added at the end of some chapters and expanded in others.
These comments are intended to present each chapter in the context of the big
picture and discuss how the chapters relate to one another. They also provide
cautions about the possible misuse of statistical techniques MSL bullet.

• Chapter 1 has been enhanced to include more on single-number statistics as
well as graphical techniques. New fundamental material on sampling and
experimental design is presented.

• Examples added to Chapter 8 on sampling distributions are intended to moti-
vate P -values and hypothesis testing. This prepares the student for the more
challenging material on these topics that will be presented in Chapter 10.

• Chapter 12 contains additional development regarding the effect of a single re-
gression variable in a model in which collinearity with other variables is severe.

• Chapter 15 now introduces material on the important topic of response surface
methodology (RSM). The use of noise variables in RSM allows the illustration
of mean and variance (dual response surface) modeling.

• The central composite design (CCD) is introduced in Chapter 15.

• More examples are given in Chapter 18, and the discussion of using Bayesian
methods for statistical decision making has been enhanced.

Content and Course Planning

This text is designed for either a one- or a two-semester course. A reasonable plan
for a one-semester course might include Chapters 1 through 10. This would result
in a curriculum that concluded with the fundamentals of both estimation and hy-
pothesis testing. Instructors who desire that students be exposed to simple linear
regression may wish to include a portion of Chapter 11. For instructors who desire
to have analysis of variance included rather than regression, the one-semester course
may include Chapter 13 rather than Chapters 11 and 12. Chapter 13 features one-
factor analysis of variance. Another option is to eliminate portions of Chapters 5
and/or 6 as well as Chapter 7. With this option, one or more of the discrete or con-
tinuous distributions in Chapters 5 and 6 may be eliminated. These distributions
include the negative binomial, geometric, gamma, Weibull, beta, and log normal
distributions. Other features that one might consider removing from a one-semester
curriculum include maximum likelihood estimation, prediction, and/or tolerance
limits in Chapter 9. A one-semester curriculum has built-in flexibility, depending
on the relative interest of the instructor in regression, analysis of variance, ex-
perimental design, and response surface methods (Chapter 15). There are several

http://www.mystatlab.com
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discrete and continuous distributions (Chapters 5 and 6) that have applications in
a variety of engineering and scientific areas.

Chapters 11 through 18 contain substantial material that can be added for the
second semester of a two-semester course. The material on simple and multiple
linear regression is in Chapters 11 and 12, respectively. Chapter 12 alone offers a
substantial amount of flexibility. Multiple linear regression includes such “special
topics” as categorical or indicator variables, sequential methods of model selection
such as stepwise regression, the study of residuals for the detection of violations
of assumptions, cross validation and the use of the PRESS statistic as well as
Cp , and logistic regression. The use of orthogonal regressors, a precursor to the
experimental design in Chapter 15, is highlighted. Chapters 13 and 14 offer a
relatively large amount of material on analysis of variance (ANOVA) with fixed,
random, and mixed models. Chapter 15 highlights the application of two-level
designs in the context of full and fractional factorial experiments (2k ). Special
screening designs are illustrated. Chapter 15 also features a new section on response
surface methodology (RSM) to illustrate the use of experimental design for finding
optimal process conditions. The fitting of a second order model through the use of
a central composite design is discussed. RSM is expanded to cover the analysis of
robust parameter design type problems. Noise variables are used to accommodate
dual response surface models. Chapters 16, 17, and 18 contain a moderate amount
of material on nonparametric statistics, quality control, and Bayesian inference.

Chapter 1 is an overview of statistical inference presented on a mathematically
simple level. It has been expanded from the eighth edition to more thoroughly
cover single-number statistics and graphical techniques. It is designed to give
students a preliminary presentation of elementary concepts that will allow them to
understand more involved details that follow. Elementary concepts in sampling,
data collection, and experimental design are presented, and rudimentary aspects
of graphical tools are introduced, as well as a sense of what is garnered from a
data set. Stem-and-leaf plots and box-and-whisker plots have been added. Graphs
are better organized and labeled. The discussion of uncertainty and variation in
a system is thorough and well illustrated. There are examples of how to sort
out the important characteristics of a scientific process or system, and these ideas
are illustrated in practical settings such as manufacturing processes, biomedical
studies, and studies of biological and other scientific systems. A contrast is made
between the use of discrete and continuous data. Emphasis is placed on the use
of models and the information concerning statistical models that can be obtained
from graphical tools.

Chapters 2, 3, and 4 deal with basic probability as well as discrete and contin-
uous random variables. Chapters 5 and 6 focus on specific discrete and continuous
distributions as well as relationships among them. These chapters also highlight
examples of applications of the distributions in real-life scientific and engineering
studies. Examples, case studies, and a large number of exercises edify the student
concerning the use of these distributions. Projects bring the practical use of these
distributions to life through group work. Chapter 7 is the most theoretical chap-
ter in the text. It deals with transformation of random variables and will likely
not be used unless the instructor wishes to teach a relatively theoretical course.
Chapter 8 contains graphical material, expanding on the more elementary set of
graphical tools presented and illustrated in Chapter 1. Probability plotting is dis-
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cussed and illustrated with examples. The very important concept of sampling
distributions is presented thoroughly, and illustrations are given that involve the
central limit theorem and the distribution of a sample variance under normal, in-
dependent (i.i.d.) sampling. The t and F distributions are introduced to motivate
their use in chapters to follow. New material in Chapter 8 helps the student to
visualize the importance of hypothesis testing, motivating the concept of a P -value.

Chapter 9 contains material on one- and two-sample point and interval esti-
mation. A thorough discussion with examples points out the contrast between the
different types of intervals—confidence intervals, prediction intervals, and toler-
ance intervals. A case study illustrates the three types of statistical intervals in the
context of a manufacturing situation. This case study highlights the differences
among the intervals, their sources, and the assumptions made in their develop-
ment, as well as what type of scientific study or question requires the use of each
one. A new approximation method has been added for the inference concerning a
proportion. Chapter 10 begins with a basic presentation on the pragmatic mean-
ing of hypothesis testing, with emphasis on such fundamental concepts as null and
alternative hypotheses, the role of probability and the P -value, and the power of
a test. Following this, illustrations are given of tests concerning one and two sam-
ples under standard conditions. The two-sample t-test with paired observations
is also described. A case study helps the student to develop a clear picture of
what interaction among factors really means as well as the dangers that can arise
when interaction between treatments and experimental units exists. At the end of
Chapter 10 is a very important section that relates Chapters 9 and 10 (estimation
and hypothesis testing) to Chapters 11 through 16, where statistical modeling is
prominent. It is important that the student be aware of the strong connection.

Chapters 11 and 12 contain material on simple and multiple linear regression,
respectively. Considerably more attention is given in this edition to the effect that
collinearity among the regression variables plays. A situation is presented that
shows how the role of a single regression variable can depend in large part on what
regressors are in the model with it. The sequential model selection procedures (for-
ward, backward, stepwise, etc.) are then revisited in regard to this concept, and
the rationale for using certain P -values with these procedures is provided. Chap-
ter 12 offers material on nonlinear modeling with a special presentation of logistic
regression, which has applications in engineering and the biological sciences. The
material on multiple regression is quite extensive and thus provides considerable
flexibility for the instructor, as indicated earlier. At the end of Chapter 12 is com-
mentary relating that chapter to Chapters 14 and 15. Several features were added
that provide a better understanding of the material in general. For example, the
end-of-chapter material deals with cautions and difficulties one might encounter.
It is pointed out that there are types of responses that occur naturally in practice
(e.g. proportion responses, count responses, and several others) with which stan-
dard least squares regression should not be used because standard assumptions do
not hold and violation of assumptions may induce serious errors. The suggestion is
made that data transformation on the response may alleviate the problem in some
cases. Flexibility is again available in Chapters 13 and 14, on the topic of analysis
of variance. Chapter 13 covers one-factor ANOVA in the context of a completely
randomized design. Complementary topics include tests on variances and multiple
comparisons. Comparisons of treatments in blocks are highlighted, along with the
topic of randomized complete blocks. Graphical methods are extended to ANOVA
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to aid the student in supplementing the formal inference with a pictorial type of in-
ference that can aid scientists and engineers in presenting material. A new project
is given in which students incorporate the appropriate randomization into each
plan and use graphical techniques and P -values in reporting the results. Chapter
14 extends the material in Chapter 13 to accommodate two or more factors that
are in a factorial structure. The ANOVA presentation in Chapter 14 includes work
in both random and fixed effects models. Chapter 15 offers material associated
with 2k factorial designs; examples and case studies present the use of screening
designs and special higher fractions of the 2k . Two new and special features are
the presentations of response surface methodology (RSM) and robust parameter
design. These topics are linked in a case study that describes and illustrates a
dual response surface design and analysis featuring the use of process mean and
variance response surfaces.

Computer Software

Case studies, beginning in Chapter 8, feature computer printout and graphical
material generated using both SAS and MINITAB. The inclusion of the computer
reflects our belief that students should have the experience of reading and inter-
preting computer printout and graphics, even if the software in the text is not that
which is used by the instructor. Exposure to more than one type of software can
broaden the experience base for the student. There is no reason to believe that
the software used in the course will be that which the student will be called upon
to use in practice following graduation. Examples and case studies in the text are
supplemented, where appropriate, by various types of residual plots, quantile plots,
normal probability plots, and other plots. Such plots are particularly prevalent in
Chapters 11 through 15.
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Chapter 1

Introduction to Statistics
and Data Analysis

1.1 Overview: Statistical Inference, Samples, Populations,
and the Role of Probability

Beginning in the 1980s and continuing into the 21st century, an inordinate amount
of attention has been focused on improvement of quality in American industry.
Much has been said and written about the Japanese “industrial miracle,” which
began in the middle of the 20th century. The Japanese were able to succeed where
we and other countries had failed–namely, to create an atmosphere that allows
the production of high-quality products. Much of the success of the Japanese has
been attributed to the use of statistical methods and statistical thinking among
management personnel.

Use of Scientific Data

The use of statistical methods in manufacturing, development of food products,
computer software, energy sources, pharmaceuticals, and many other areas involves
the gathering of information or scientific data. Of course, the gathering of data
is nothing new. It has been done for well over a thousand years. Data have
been collected, summarized, reported, and stored for perusal. However, there is a
profound distinction between collection of scientific information and inferential
statistics. It is the latter that has received rightful attention in recent decades.

The offspring of inferential statistics has been a large “toolbox” of statistical
methods employed by statistical practitioners. These statistical methods are de-
signed to contribute to the process of making scientific judgments in the face of
uncertainty and variation. The product density of a particular material from a
manufacturing process will not always be the same. Indeed, if the process involved
is a batch process rather than continuous, there will be not only variation in ma-
terial density among the batches that come off the line (batch-to-batch variation),
but also within-batch variation. Statistical methods are used to analyze data from
a process such as this one in order to gain more sense of where in the process
changes may be made to improve the quality of the process. In this process, qual-
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ity may well be defined in relation to closeness to a target density value in harmony
with what portion of the time this closeness criterion is met. An engineer may be
concerned with a specific instrument that is used to measure sulfur monoxide in
the air during pollution studies. If the engineer has doubts about the effectiveness
of the instrument, there are two sources of variation that must be dealt with.
The first is the variation in sulfur monoxide values that are found at the same
locale on the same day. The second is the variation between values observed and
the true amount of sulfur monoxide that is in the air at the time. If either of these
two sources of variation is exceedingly large (according to some standard set by
the engineer), the instrument may need to be replaced. In a biomedical study of a
new drug that reduces hypertension, 85% of patients experienced relief, while it is
generally recognized that the current drug, or “old” drug, brings relief to 80% of pa-
tients that have chronic hypertension. However, the new drug is more expensive to
make and may result in certain side effects. Should the new drug be adopted? This
is a problem that is encountered (often with much more complexity) frequently by
pharmaceutical firms in conjunction with the FDA (Federal Drug Administration).
Again, the consideration of variation needs to be taken into account. The “85%”
value is based on a certain number of patients chosen for the study. Perhaps if the
study were repeated with new patients the observed number of “successes” would
be 75%! It is the natural variation from study to study that must be taken into
account in the decision process. Clearly this variation is important, since variation
from patient to patient is endemic to the problem.

Variability in Scientific Data

In the problems discussed above the statistical methods used involve dealing with
variability, and in each case the variability to be studied is that encountered in
scientific data. If the observed product density in the process were always the
same and were always on target, there would be no need for statistical methods.
If the device for measuring sulfur monoxide always gives the same value and the
value is accurate (i.e., it is correct), no statistical analysis is needed. If there
were no patient-to-patient variability inherent in the response to the drug (i.e.,
it either always brings relief or not), life would be simple for scientists in the
pharmaceutical firms and FDA and no statistician would be needed in the decision
process. Statistics researchers have produced an enormous number of analytical
methods that allow for analysis of data from systems like those described above.
This reflects the true nature of the science that we call inferential statistics, namely,
using techniques that allow us to go beyond merely reporting data to drawing
conclusions (or inferences) about the scientific system. Statisticians make use of
fundamental laws of probability and statistical inference to draw conclusions about
scientific systems. Information is gathered in the form of samples, or collections
of observations. The process of sampling is introduced in Chapter 2, and the
discussion continues throughout the entire book.

Samples are collected from populations, which are collections of all individ-
uals or individual items of a particular type. At times a population signifies a
scientific system. For example, a manufacturer of computer boards may wish to
eliminate defects. A sampling process may involve collecting information on 50
computer boards sampled randomly from the process. Here, the population is all
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computer boards manufactured by the firm over a specific period of time. If an
improvement is made in the computer board process and a second sample of boards
is collected, any conclusions drawn regarding the effectiveness of the change in pro-
cess should extend to the entire population of computer boards produced under
the “improved process.” In a drug experiment, a sample of patients is taken and
each is given a specific drug to reduce blood pressure. The interest is focused on
drawing conclusions about the population of those who suffer from hypertension.

Often, it is very important to collect scientific data in a systematic way, with
planning being high on the agenda. At times the planning is, by necessity, quite
limited. We often focus only on certain properties or characteristics of the items or
objects in the population. Each characteristic has particular engineering or, say,
biological importance to the “customer,” the scientist or engineer who seeks to learn
about the population. For example, in one of the illustrations above the quality
of the process had to do with the product density of the output of a process. An
engineer may need to study the effect of process conditions, temperature, humidity,
amount of a particular ingredient, and so on. He or she can systematically move
these factors to whatever levels are suggested according to whatever prescription
or experimental design is desired. However, a forest scientist who is interested
in a study of factors that influence wood density in a certain kind of tree cannot
necessarily design an experiment. This case may require an observational study
in which data are collected in the field but factor levels can not be preselected.
Both of these types of studies lend themselves to methods of statistical inference.
In the former, the quality of the inferences will depend on proper planning of the
experiment. In the latter, the scientist is at the mercy of what can be gathered.
For example, it is sad if an agronomist is interested in studying the effect of rainfall
on plant yield and the data are gathered during a drought.

The importance of statistical thinking by managers and the use of statistical
inference by scientific personnel is widely acknowledged. Research scientists gain
much from scientific data. Data provide understanding of scientific phenomena.
Product and process engineers learn a great deal in their off-line efforts to improve
the process. They also gain valuable insight by gathering production data (on-
line monitoring) on a regular basis. This allows them to determine necessary
modifications in order to keep the process at a desired level of quality.

There are times when a scientific practitioner wishes only to gain some sort of
summary of a set of data represented in the sample. In other words, inferential
statistics is not required. Rather, a set of single-number statistics or descriptive
statistics is helpful. These numbers give a sense of center of the location of
the data, variability in the data, and the general nature of the distribution of
observations in the sample. Though no specific statistical methods leading to
statistical inference are incorporated, much can be learned. At times, descriptive
statistics are accompanied by graphics. Modern statistical software packages allow
for computation of means, medians, standard deviations, and other single-
number statistics as well as production of graphs that show a “footprint” of the
nature of the sample. Definitions and illustrations of the single-number statistics
and graphs, including histograms, stem-and-leaf plots, scatter plots, dot plots, and
box plots, will be given in sections that follow.
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The Role of Probability

In this book, Chapters 2 to 6 deal with fundamental notions of probability. A
thorough grounding in these concepts allows the reader to have a better under-
standing of statistical inference. Without some formalism of probability theory,
the student cannot appreciate the true interpretation from data analysis through
modern statistical methods. It is quite natural to study probability prior to study-
ing statistical inference. Elements of probability allow us to quantify the strength
or “confidence” in our conclusions. In this sense, concepts in probability form a
major component that supplements statistical methods and helps us gauge the
strength of the statistical inference. The discipline of probability, then, provides
the transition between descriptive statistics and inferential methods. Elements of
probability allow the conclusion to be put into the language that the science or
engineering practitioners require. An example follows that will enable the reader
to understand the notion of a P -value, which often provides the “bottom line” in
the interpretation of results from the use of statistical methods.

Example 1.1: Suppose that an engineer encounters data from a manufacturing process in which
100 items are sampled and 10 are found to be defective. It is expected and antic-
ipated that occasionally there will be defective items. Obviously these 100 items
represent the sample. However, it has been determined that in the long run, the
company can only tolerate 5% defective in the process. Now, the elements of prob-
ability allow the engineer to determine how conclusive the sample information is
regarding the nature of the process. In this case, the population conceptually
represents all possible items from the process. Suppose we learn that if the process
is acceptable, that is, if it does produce items no more than 5% of which are de-
fective, there is a probability of 0.0282 of obtaining 10 or more defective items in
a random sample of 100 items from the process. This small probability suggests
that the process does, indeed, have a long-run rate of defective items that exceeds
5%. In other words, under the condition of an acceptable process, the sample in-
formation obtained would rarely occur. However, it did occur! Clearly, though, it
would occur with a much higher probability if the process defective rate exceeded
5% by a significant amount.

From this example it becomes clear that the elements of probability aid in the
translation of sample information into something conclusive or inconclusive about
the scientific system. In fact, what was learned likely is alarming information to
the engineer or manager. Statistical methods, which we will actually detail in
Chapter 10, produced a P -value of 0.0282. The result suggests that the process
very likely is not acceptable. The concept of a P-value is dealt with at length
in succeeding chapters. The example that follows provides a second illustration.

Example 1.2: Often the nature of the scientific study will dictate the role that probability and
deductive reasoning play in statistical inference. Exercise 9.40 on page 314 provides
data associated with a study conducted at the Virginia Polytechnic Institute and
State University on the development of a relationship between the roots of trees and
the action of a fungus. Minerals are transferred from the fungus to the trees and
sugars from the trees to the fungus. Two samples of 10 northern red oak seedlings
were planted in a greenhouse, one containing seedlings treated with nitrogen and



1.1 Overview: Statistical Inference, Samples, Populations, and the Role of Probability 25

the other containing seedlings with no nitrogen. All other environmental conditions
were held constant. All seedlings contained the fungus Pisolithus tinctorus. More
details are supplied in Chapter 9. The stem weights in grams were recorded after
the end of 140 days. The data are given in Table 1.1.

Table 1.1: Data Set for Example 1.2

No Nitrogen Nitrogen
0.32 0.26
0.53 0.43
0.28 0.47
0.37 0.49
0.47 0.52
0.43 0.75
0.36 0.79
0.42 0.86
0.38 0.62
0.43 0.46

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

Figure 1.1: A dot plot of stem weight data.

In this example there are two samples from two separate populations. The
purpose of the experiment is to determine if the use of nitrogen has an influence
on the growth of the roots. The study is a comparative study (i.e., we seek to
compare the two populations with regard to a certain important characteristic). It
is instructive to plot the data as shown in the dot plot of Figure 1.1. The ◦ values
represent the “nitrogen” data and the × values represent the “no-nitrogen” data.

Notice that the general appearance of the data might suggest to the reader
that, on average, the use of nitrogen increases the stem weight. Four nitrogen ob-
servations are considerably larger than any of the no-nitrogen observations. Most
of the no-nitrogen observations appear to be below the center of the data. The
appearance of the data set would seem to indicate that nitrogen is effective. But
how can this be quantified? How can all of the apparent visual evidence be summa-
rized in some sense? As in the preceding example, the fundamentals of probability
can be used. The conclusions may be summarized in a probability statement or
P-value. We will not show here the statistical inference that produces the summary
probability. As in Example 1.1, these methods will be discussed in Chapter 10.
The issue revolves around the “probability that data like these could be observed”
given that nitrogen has no effect, in other words, given that both samples were
generated from the same population. Suppose that this probability is small, say
0.03. That would certainly be strong evidence that the use of nitrogen does indeed
influence (apparently increases) average stem weight of the red oak seedlings.
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How Do Probability and Statistical Inference Work Together?

It is important for the reader to understand the clear distinction between the
discipline of probability, a science in its own right, and the discipline of inferen-
tial statistics. As we have already indicated, the use or application of concepts in
probability allows real-life interpretation of the results of statistical inference. As a
result, it can be said that statistical inference makes use of concepts in probability.
One can glean from the two examples above that the sample information is made
available to the analyst and, with the aid of statistical methods and elements of
probability, conclusions are drawn about some feature of the population (the pro-
cess does not appear to be acceptable in Example 1.1, and nitrogen does appear
to influence average stem weights in Example 1.2). Thus for a statistical problem,
the sample along with inferential statistics allows us to draw conclu-
sions about the population, with inferential statistics making clear use
of elements of probability. This reasoning is inductive in nature. Now as we
move into Chapter 2 and beyond, the reader will note that, unlike what we do in
our two examples here, we will not focus on solving statistical problems. Many
examples will be given in which no sample is involved. There will be a population
clearly described with all features of the population known. Then questions of im-
portance will focus on the nature of data that might hypothetically be drawn from
the population. Thus, one can say that elements in probability allow us to
draw conclusions about characteristics of hypothetical data taken from
the population, based on known features of the population. This type of
reasoning is deductive in nature. Figure 1.2 shows the fundamental relationship
between probability and inferential statistics.

Population Sample

Probability

Statistical Inference

Figure 1.2: Fundamental relationship between probability and inferential statistics.

Now, in the grand scheme of things, which is more important, the field of
probability or the field of statistics? They are both very important and clearly are
complementary. The only certainty concerning the pedagogy of the two disciplines
lies in the fact that if statistics is to be taught at more than merely a “cookbook”
level, then the discipline of probability must be taught first. This rule stems from
the fact that nothing can be learned about a population from a sample until the
analyst learns the rudiments of uncertainty in that sample. For example, consider
Example 1.1. The question centers around whether or not the population, defined
by the process, is no more than 5% defective. In other words, the conjecture is that
on the average 5 out of 100 items are defective. Now, the sample contains 100
items and 10 are defective. Does this support the conjecture or refute it? On the
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surface it would appear to be a refutation of the conjecture because 10 out of 100
seem to be “a bit much.” But without elements of probability, how do we know?
Only through the study of material in future chapters will we learn the conditions
under which the process is acceptable (5% defective). The probability of obtaining
10 or more defective items in a sample of 100 is 0.0282.

We have given two examples where the elements of probability provide a sum-
mary that the scientist or engineer can use as evidence on which to build a decision.
The bridge between the data and the conclusion is, of course, based on foundations
of statistical inference, distribution theory, and sampling distributions discussed in
future chapters.

1.2 Sampling Procedures; Collection of Data

In Section 1.1 we discussed very briefly the notion of sampling and the sampling
process. While sampling appears to be a simple concept, the complexity of the
questions that must be answered about the population or populations necessitates
that the sampling process be very complex at times. While the notion of sampling
is discussed in a technical way in Chapter 8, we shall endeavor here to give some
common-sense notions of sampling. This is a natural transition to a discussion of
the concept of variability.

Simple Random Sampling

The importance of proper sampling revolves around the degree of confidence with
which the analyst is able to answer the questions being asked. Let us assume that
only a single population exists in the problem. Recall that in Example 1.2 two
populations were involved. Simple random sampling implies that any particular
sample of a specified sample size has the same chance of being selected as any
other sample of the same size. The term sample size simply means the number of
elements in the sample. Obviously, a table of random numbers can be utilized in
sample selection in many instances. The virtue of simple random sampling is that
it aids in the elimination of the problem of having the sample reflect a different
(possibly more confined) population than the one about which inferences need to be
made. For example, a sample is to be chosen to answer certain questions regarding
political preferences in a certain state in the United States. The sample involves
the choice of, say, 1000 families, and a survey is to be conducted. Now, suppose it
turns out that random sampling is not used. Rather, all or nearly all of the 1000
families chosen live in an urban setting. It is believed that political preferences
in rural areas differ from those in urban areas. In other words, the sample drawn
actually confined the population and thus the inferences need to be confined to the
“limited population,” and in this case confining may be undesirable. If, indeed,
the inferences need to be made about the state as a whole, the sample of size 1000
described here is often referred to as a biased sample.

As we hinted earlier, simple random sampling is not always appropriate. Which
alternative approach is used depends on the complexity of the problem. Often, for
example, the sampling units are not homogeneous and naturally divide themselves
into nonoverlapping groups that are homogeneous. These groups are called strata,
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and a procedure called stratified random sampling involves random selection of a
sample within each stratum. The purpose is to be sure that each of the strata
is neither over- nor underrepresented. For example, suppose a sample survey is
conducted in order to gather preliminary opinions regarding a bond referendum
that is being considered in a certain city. The city is subdivided into several ethnic
groups which represent natural strata. In order not to disregard or overrepresent
any group, separate random samples of families could be chosen from each group.

Experimental Design

The concept of randomness or random assignment plays a huge role in the area of
experimental design, which was introduced very briefly in Section 1.1 and is an
important staple in almost any area of engineering or experimental science. This
will be discussed at length in Chapters 13 through 15. However, it is instructive to
give a brief presentation here in the context of random sampling. A set of so-called
treatments or treatment combinations becomes the populations to be studied
or compared in some sense. An example is the nitrogen versus no-nitrogen treat-
ments in Example 1.2. Another simple example would be “placebo” versus “active
drug,” or in a corrosion fatigue study we might have treatment combinations that
involve specimens that are coated or uncoated as well as conditions of low or high
humidity to which the specimens are exposed. In fact, there are four treatment
or factor combinations (i.e., 4 populations), and many scientific questions may be
asked and answered through statistical and inferential methods. Consider first the
situation in Example 1.2. There are 20 diseased seedlings involved in the exper-
iment. It is easy to see from the data themselves that the seedlings are different
from each other. Within the nitrogen group (or the no-nitrogen group) there is
considerable variability in the stem weights. This variability is due to what is
generally called the experimental unit. This is a very important concept in in-
ferential statistics, in fact one whose description will not end in this chapter. The
nature of the variability is very important. If it is too large, stemming from a
condition of excessive nonhomogeneity in experimental units, the variability will
“wash out” any detectable difference between the two populations. Recall that in
this case that did not occur.

The dot plot in Figure 1.1 and P-value indicated a clear distinction between
these two conditions. What role do those experimental units play in the data-
taking process itself? The common-sense and, indeed, quite standard approach is
to assign the 20 seedlings or experimental units randomly to the two treat-
ments or conditions. In the drug study, we may decide to use a total of 200
available patients, patients that clearly will be different in some sense. They are
the experimental units. However, they all may have the same chronic condition
for which the drug is a potential treatment. Then in a so-called completely ran-
domized design, 100 patients are assigned randomly to the placebo and 100 to
the active drug. Again, it is these experimental units within a group or treatment
that produce the variability in data results (i.e., variability in the measured result),
say blood pressure, or whatever drug efficacy value is important. In the corrosion
fatigue study, the experimental units are the specimens that are the subjects of
the corrosion.
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Why Assign Experimental Units Randomly?

What is the possible negative impact of not randomly assigning experimental units
to the treatments or treatment combinations? This is seen most clearly in the
case of the drug study. Among the characteristics of the patients that produce
variability in the results are age, gender, and weight. Suppose merely by chance
the placebo group contains a sample of people that are predominately heavier than
those in the treatment group. Perhaps heavier individuals have a tendency to have
a higher blood pressure. This clearly biases the result, and indeed, any result
obtained through the application of statistical inference may have little to do with
the drug and more to do with differences in weights among the two samples of
patients.

We should emphasize the attachment of importance to the term variability.
Excessive variability among experimental units “camouflages” scientific findings.
In future sections, we attempt to characterize and quantify measures of variability.
In sections that follow, we introduce and discuss specific quantities that can be
computed in samples; the quantities give a sense of the nature of the sample with
respect to center of location of the data and variability in the data. A discussion
of several of these single-number measures serves to provide a preview of what
statistical information will be important components of the statistical methods
that are used in future chapters. These measures that help characterize the nature
of the data set fall into the category of descriptive statistics. This material is
a prelude to a brief presentation of pictorial and graphical methods that go even
further in characterization of the data set. The reader should understand that the
statistical methods illustrated here will be used throughout the text. In order to
offer the reader a clearer picture of what is involved in experimental design studies,
we offer Example 1.3.

Example 1.3: A corrosion study was made in order to determine whether coating an aluminum
metal with a corrosion retardation substance reduced the amount of corrosion.
The coating is a protectant that is advertised to minimize fatigue damage in this
type of material. Also of interest is the influence of humidity on the amount of
corrosion. A corrosion measurement can be expressed in thousands of cycles to
failure. Two levels of coating, no coating and chemical corrosion coating, were
used. In addition, the two relative humidity levels are 20% relative humidity and
80% relative humidity.

The experiment involves four treatment combinations that are listed in the table
that follows. There are eight experimental units used, and they are aluminum
specimens prepared; two are assigned randomly to each of the four treatment
combinations. The data are presented in Table 1.2.

The corrosion data are averages of two specimens. A plot of the averages is
pictured in Figure 1.3. A relatively large value of cycles to failure represents a
small amount of corrosion. As one might expect, an increase in humidity appears
to make the corrosion worse. The use of the chemical corrosion coating procedure
appears to reduce corrosion.

In this experimental design illustration, the engineer has systematically selected
the four treatment combinations. In order to connect this situation to concepts
with which the reader has been exposed to this point, it should be assumed that the
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Table 1.2: Data for Example 1.3

Average Corrosion in
Coating Humidity Thousands of Cycles to Failure

Uncoated 20% 975
80% 350

Chemical Corrosion 20% 1750
80% 1550
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Figure 1.3: Corrosion results for Example 1.3.

conditions representing the four treatment combinations are four separate popula-
tions and that the two corrosion values observed for each population are important
pieces of information. The importance of the average in capturing and summariz-
ing certain features in the population will be highlighted in Section 1.3. While we
might draw conclusions about the role of humidity and the impact of coating the
specimens from the figure, we cannot truly evaluate the results from an analyti-
cal point of view without taking into account the variability around the average.
Again, as we indicated earlier, if the two corrosion values for each treatment com-
bination are close together, the picture in Figure 1.3 may be an accurate depiction.
But if each corrosion value in the figure is an average of two values that are widely
dispersed, then this variability may, indeed, truly “wash away” any information
that appears to come through when one observes averages only. The foregoing
example illustrates these concepts:

(1) random assignment of treatment combinations (coating, humidity) to experi-
mental units (specimens)

(2) the use of sample averages (average corrosion values) in summarizing sample
information

(3) the need for consideration of measures of variability in the analysis of any
sample or sets of samples




